Interannual variation in methane emissions from tropical wetlands triggered by repeated El Niño Southern Oscillation.
نویسندگان
چکیده
Methane (CH4 ) emissions from tropical wetlands contribute 60%-80% of global natural wetland CH4 emissions. Decreased wetland CH4 emissions can act as a negative feedback mechanism for future climate warming and vice versa. The impact of the El Niño-Southern Oscillation (ENSO) on CH4 emissions from wetlands remains poorly quantified at both regional and global scales, and El Niño events are expected to become more severe based on climate models' projections. We use a process-based model of global wetland CH4 emissions to investigate the impacts of the ENSO on CH4 emissions in tropical wetlands for the period from 1950 to 2012. The results show that CH4 emissions from tropical wetlands respond strongly to repeated ENSO events, with negative anomalies occurring during El Niño periods and with positive anomalies occurring during La Niña periods. An approximately 8-month time lag was detected between tropical wetland CH4 emissions and ENSO events, which was caused by the combined time lag effects of ENSO events on precipitation and temperature over tropical wetlands. The ENSO can explain 49% of interannual variations for tropical wetland CH4 emissions. Furthermore, relative to neutral years, changes in temperature have much stronger effects on tropical wetland CH4 emissions than the changes in precipitation during ENSO periods. The occurrence of several El Niño events contributed to a lower decadal mean growth rate in atmospheric CH4 concentrations throughout the 1980s and 1990s and to stable atmospheric CH4 concentrations from 1999 to 2006, resulting in negative feedback to global warming.
منابع مشابه
Pronounced interannual variability in tropical South Pacific temperatures during Heinrich Stadial 1.
The early last glacial termination was characterized by intense North Atlantic cooling and weak overturning circulation. This interval between ~18,000 and 14,600 years ago, known as Heinrich Stadial 1, was accompanied by a disruption of global climate and has been suggested as a key factor for the termination. However, the response of interannual climate variability in the tropical Pacific (El ...
متن کاملImpacts of fire emissions and transport pathways on the interannual variation of CO in the tropical upper troposphere
This study investigates the impacts of fire emission, convection, various climate conditions and transport pathways on the interannual variation of carbon monoxide (CO) in the tropical upper troposphere (UT), by evaluating the field correlation between these fields using multisatellite observations and principle component analysis, and the transport pathway auto-identification method developed ...
متن کاملA theory for el nino and the southern oscillation.
A coupled atmosphere-ocean model is presented for El Niño and the Southern Oscillation that reproduces its major features, including its recurrence at irregular intervals. The interannual El Niño-Southern Oscillation cycle is maintained by deterministic interactions in the tropical Pacific region. Ocean dynamics alter sea-surface temperature, changing the atmospheric heating; the resulting chan...
متن کاملThe Influence of El Niño–Southern Oscillation and the Atlantic Multidecadal Oscillation on Caribbean Tropical Cyclone Activity
Caribbean basin tropical cyclone activity shows significant variability on interannual as well as multidecadal time scales. Comprehensive statistics for Caribbean hurricane activity are tabulated, and then large-scale climate features are examined for their impacts on this activity. The primary interannual driver of variability is found to be El Niño–Southern Oscillation, which alters levels of...
متن کاملInterannual variability in methane growth rate simulated with a coupled Ocean-Atmosphere-Chemistry model
[1] We assess the contribution made to the interannual variability of the global methane accumulation rate from its atmospheric sink using the STOCHEM tropospheric chemistry model coupled to the HadCM3 climate model. For both control and climate change scenarios, the standard deviation of the detrended accumulation rate was 1.4 ppbv/ yr for the period 1990–2009, compared with the measured stand...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Global change biology
دوره 23 11 شماره
صفحات -
تاریخ انتشار 2017